Regulation of Hox target genes by a DNA bound Homothorax/Hox/Extradenticle complex.

نویسندگان

  • H D Ryoo
  • T Marty
  • F Casares
  • M Affolter
  • R S Mann
چکیده

To regulate their target genes, the Hox proteins of Drosophila often bind to DNA as heterodimers with the homeodomain protein Extradenticle (EXD). For EXD to bind DNA, it must be in the nucleus, and its nuclear localization requires a third homeodomain protein, Homothorax (HTH). Here we show that a conserved N-terminal domain of HTH directly binds to EXD in vitro, and is sufficient to induce the nuclear localization of EXD in vivo. However, mutating a key DNA binding residue in the HTH homeodomain abolishes many of its in vivo functions. HTH binds to DNA as part of a HTH/Hox/EXD trimeric complex, and we show that this complex is essential for the activation of a natural Hox target enhancer. Using a dominant negative form of HTH we provide evidence that similar complexes are important for several Hox- and exd-mediated functions in vivo. These data suggest that Hox proteins often function as part of a multiprotein complex, composed of HTH, Hox, and EXD proteins, bound to DNA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition of distinct target sites by a unique Labial/Extradenticle/Homothorax complex.

Hox genes encode evolutionarily conserved transcriptional regulators, which define regional identities along the anteroposterior axis of multicellular animals. In Drosophila, Hox proteins bind to target DNA sequences in association with the Extradenticle (Exd) and Homothorax (Hth) co-factors. The current model of Hox-binding selectivity proposes that the nucleotide sequence identity defines the...

متن کامل

Engrailed cooperates with extradenticle and homothorax to repress target genes in Drosophila.

Engrailed is a key transcriptional regulator in the nervous system and in the maintenance of developmental boundaries in Drosophila, and its vertebrate homologs regulate brain and limb development. Here, we show that the functions of both of the Hox cofactors Extradenticle and Homothorax play essential roles in repression by Engrailed. Mutations that remove either of them abrogate the ability o...

متن کامل

Variable motif utilization in homeotic selector (Hox)-cofactor complex formation controls specificity.

Homeotic selector (Hox) proteins often bind DNA cooperatively with cofactors such as Extradenticle (Exd) and Homothorax (Hth) to achieve functional specificity in vivo. Previous studies identified the Hox YPWM motif as an important Exd interaction motif. Using a comparative approach, we characterize the contribution of this and additional conserved sequence motifs to the regulation of specific ...

متن کامل

Cofactor Binding Evokes Latent Differences in DNA Binding Specificity between Hox Proteins

Members of transcription factor families typically have similar DNA binding specificities yet execute unique functions in vivo. Transcription factors often bind DNA as multiprotein complexes, raising the possibility that complex formation might modify their DNA binding specificities. To test this hypothesis, we developed an experimental and computational platform, SELEX-seq, that can be used to...

متن کامل

Antagonism Versus Cooperativity with TALE Cofactors at the Base of the Functional Diversification of Hox Protein Function

Extradenticle (Exd) and Homothorax (Hth) function as positive transcriptional cofactors of Hox proteins, helping them to bind specifically their direct targets. The posterior Hox protein Abdominal-B (Abd-B) does not require Exd/Hth to bind DNA; and, during embryogenesis, Abd-B represses hth and exd transcription. Here we show that this repression is necessary for Abd-B function, as maintained E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 126 22  شماره 

صفحات  -

تاریخ انتشار 1999